
 Indie Marc
 Dialogue System

Dialogue System
How to use Dialogue System 2D for Unity

 Indie Marc
 Dialogue System

Dialogue System

The best way to get started with the Dialogue System is to look at the demo scenes. The following

document helps to explain more in details how to create dialogues and quests. There are two

demos included: a platformer, and a top-down game.

Getting Started
There are 3 things you will need to start creating dialogues:

• The Narrative Manager

• A dialogue event with dialogues messages

• And a dialogue actor.

Narrative Manager

Must be included once in your scene when you want to use the dialogue system. It can be found in

the prefabs folder. There’s a different prefab for top down game, the only difference is that it uses a

different talk bubble.

Dialogue Events

A dialogue event is a group of messages that is triggered to start a dialogue. It can contain one or

more dialogue messages. You can define dialogues in your scene by creating an empty object and

adding the DialogueEvent.cs script to it. That object should also have child objects with the

DialogueMessage.cs script.

Event_id is an optional ID

reference to the event when

saved to file.

Trigger Defines what will start

the event (Region or Actor)

Auto_start will start the

dialogue without pressing the

“Talk” button.

Priority will prioritize this

dialogue over other dialogues.

Zoomed_in will affect which UI

is used to display the dialogue. It

will also stop the gameplay and

show a zoomed in version of the

characters.

 Indie Marc
 Dialogue System

When “Trigger” is set to a region, the dialogue will start when the player enter that region. When

“Trigger” is set to an actor, it will start when the character goes near that actor. If auto_start is off,

the character will also need to press “Enter” when near the actor.

Trigger limit will determine how many times that event can be triggered, with 0 meaning infinite.

If the event has an event_id the trigger count will be saved into the data that can be accessed with

NarrativeData.Get() and serialized or added to the save file of your choice. (optional if you want to

create a save system on top of this dialogue system).

Dialogue Messages

Each dialogue event must contain one or more dialogue messages as child objects.

Actor is the character that will tell that

message. The character must have the

DialogueActor script.

Side (1 or -1) is used to tell which side of

the screen the character will appear when

using the Zoomed In dialogue mode.

Voice clip is a voice over audio clip.

Duration: how long this dialogue will be

shown (user can skip before that).

Pause: How long between this message

and the next one.

Dialogue Actors

A character that can talk and that the main player can interact with. The player character must also

have a DialogueActor.cs attached. But for the player, make sure “active” is off so it can’t talk to

itself. It will just be used for the portrait and name.

Active: means the player can interact with it.

Choices_active: that actor can also suggest

dialogues choices.

Portrait: The way that actor is displayed during

dialogues (title and image).

Chat bubble: how the chat bubble is displayed.

Trigger radius: The player needs to be in that

range to interact with this actor.

 Indie Marc
 Dialogue System

Narrative Events

A narrative event act similar to a dialogue event, but without showing any dialogues. The use of it is

that you can trigger some custom effects and functions. For example you could use it to complete a

quest when a character takes an item. That event would not trigger any dialogue but it would

trigger custom effects. See the next section about conditions and effects for more info.

Narrative Conditions and Effects

Optionally, conditions and effects can be added to DialogueEvents or NarrativeEvents. They must be

added to the same GameObject than the event (DialogueEvent.cs or NarrativeEvent.cs). More than

one conditions or effects can be added to the same event.

NarrativeConditions will prevent the event from triggering unless the conditions are true.

NarrativeEffect will call custom functions after the event is triggered (so you could start a quest as

the result of a dialogue ending). Effects on a DialogueEvent will only trigger after all the dialogues

messages are finished. Effects can be added directly to the message if you want the effect to trigger

at that message (but not conditions).

In this example, the event
will only trigger if the quest
“FindTheTreasure” is not
started (condition). And will
start another dialogue after
that one ends (effect).

Effects

The most useful effect type that you will want to use it the “Call Function” effect, which allow you to

call any function from your script. But this dialogue system also comes with some “pre-built” effects,

especially related to the Dialogue System:

Custom Int/Float/String allow you to save custom data for future conditions.

Show/Hide will SetActive or not an object

Spawn/Destroy will Instantiate or Destroy an object.

Start/Cancel/Complete Quest allow you to manage quests.

Start Dialogue can start another dialogue or a dialogue choice.

RunEvent or RunEventIfMet can start a narrative event. (first one ignoring conditions).

Wait can add a delay before the next effect.

CallFunction allow you to call any function of your choice.

 Indie Marc
 Dialogue System

Conditions

If more than one condition on the same event, all of them must be true for the event to trigger

(AND). If you want different conditions to trigger the same dialogue (OR), its better to create more

than one event.

Custom Int/Float/String will check the custom data set by other effects.

IsVisible will check if a gameObject exists and if its active.

Quest Started/Active will check quests status.

DialogueTriggered will check if another dialogue was triggered before.

CustomCondition Allow you to call any condition from your script. You will need to define the

CustomCondition interface on your script for it to work.

Example:

using IndieMarc.DialogueSystem;

public class MyCondition : MonoBehavior, CustomCondition{

 public bool IsMet(){ /* --- Your Condition here --- */ }

 }

Quests

This dialogue system includes a simple quest system that can start a complete quests, and check

the status of each quest. But it does not include a complex UI to manage quests. Its up to you how

you want to access and display the quests saved in the system.

Quest_id make sure all

quests have a unique ID.

Effects can change the status of a quest from Inactive to Active to Completed or Failed.

Conditions can check the status of a quest.

 Indie Marc
 Dialogue System

Improving the System
If you notice a missing feature, and you think that it would be really helpful for you. Please let me

know about it. I REALLY WANT to improve this system and make it great! And since I can’t predict

all the use cases, your feedback would really help me know what I should include in the future

versions.

If you have any questions or suggestions send me an email:

contact@indiemarc.com

Thank you!

Credits
Indie Marc (Marc-Antoine Desbiens)

Freelance Game Developer (Programmer & Game Designer)

indiemarc.com

mailto:contact@indiemarc.com

